
UNCLASSIFIED
SEC:,RITY CLASSIFHICATION OF [HIS PAO:

REPORT DOCUMENTATION PAGE

13 ,,,lflflV ;C v~iV .. ,,

AD-A264 936
2b -_Approved for public release; distribution

6a NAME OF PERFORMING ORGANfZA'I.ON 6S OFFICE SYMBOL 7a NAME OF MONfYORiNG OR GAINIZA TiON`
Institute for Brain and (if aJPPie(abe) Personnel and Training Research Programs
Neural Systems Office of Naval Research (Code 1142PT)

6C. ADDRESS (City. State. and ZIPCodOe ?b ADDREiS(Cf,,'. Stare and 1P Co<•e)

Brown University 800 North Quincy Street
Providence, Rhode Island 02912 Arlington, VA 22217-5000

$a. NAME OF FUNDINGISPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT iDENTIFICATION NUMBER
ORGANIZATION (if appihcable)

% IN00014-91-J-1316

8c. ADDRESS (City, Stare, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK U%...
ELEMENT NO NO NO ACCESSION :',O

I1 TITLE (Include Security Classification)

A Soft-Competitive Splitting Rule for Adaptive Tree-Structured Neural Networks.

12 PERSONAL AUTHOR(S)

Michael P. Perrone
13a, TYPE OF REPORT 113b TIME COVERED 114 DATE OF REPORT (Year, Month, Day) I15 PAGE COuNT
Technical Report FROM TO May 17, 1993 Five
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identri'y by block number)

FIELD GROUP SUB-GROUP Soft-Competition, CART, Neural Networks
-IELDL

19. ABSTRACT (Continue on reverse it necessary and identify by block number)

An algorithm for generating tree structured neural networks using a soft-competitive
recursive partitioning rule is described. It is demonstrated that the algorithm grows robust,
honest estimators. Preliminary results on a 10 class, 240 dimensional OCR classification
task are presented which show that the tree out-performs backpropagation. Arguments are made
which suggest why this should be the case. The connection of the soft-competitive splitting
rule to the twoing rule is described.

N 9 .93-11615

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

EJUNCLASSIFIEDIUNLIMITEO 0 SAME AS RPT 0 OTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) Z2( O FI-'"C SYMBOL

Dr. Joel Davis (703) 696-4744
DO FORM 1473, 84 MAR 83 APR editon may be used until exhausted SvURty C

AlloURIeTY eSId (eAT bN O)f Tw -'a(A ll Othefr edition% are obs.olete . ... . .....-............ :.....'-....• . . ' = .. .



A Soft-Competitive Splitting Rule for Adaptive Tree-Structuied
Neural Networks *

Michael P. Perrone
Physics Department and Center for Neural Science

Box 1843, Brown University
Providence, RI 02912

Email: mpp@cns.brown.edu

June 6, 1992

Abstract

An algorithm for generating tree structured neural networks using a soft-competitive recur-
sive partitioning rule is described. It is demonstrated that this algorithm grows robust, honest
estimators. Preliminary results on a 10 class, 240 dimensional OCR classification task are pre-
sented which show that the tree out-performs backpropagation. Arguments are made which
suggest why this should be the case. The connection of the soft-competitive splitting rule to
the twoing rule is descnLei.

1 Introduction

In even the simplest cases, gradient descent algorithms such as backpropagation are prone to sub-
optimal behavior due to spurious local minima (Sontag and Sussmann, 1988). This problem is
related to the strong interference effects that a single backprop net will experience when it is
trained to perform many different sub-tasks (Jacobs et al., 1991). This interference gives rise to
spurious local minima which impair the net's learning and generalization. It is therefore desirable
to sub-divide complex tasks into sub-tasks which are simpler, since the networks needed to process
these sub-tasks will necessarily be less complex than a general purpose net and will therefore be

faced with fewer local minima.
This notion of sub-division was first implemented successfully in the CART algorithm (Breiman

et al., 1984). This method implemented very simple splits but was succesfully due to the introduc-
tion of pruning which prevented the solutions from becoming biased to the training data. If one

knows of an a priori sub-task breakdown, sub-nets can be constructed by hand (Hampshire and
Waibel, 1989). Otherwise, the sub-tasks must be extracted from the data. Identifying sub-tasks
often requires the extraction of new features which has been done in an unsupervised manner (In-

trator, 1991). Also sub-tasks can be identified as part of the learning process (Reilly et al., 1987; 2.
Jacobs et al., 1990; Jacobs et al., 1991; Sanger, 1991). It is also possible to construct a CART-like J
tree using perceptrons to perform the partitioning (Sankar and Mammone, 1991).

*Research was supported by the National Science Foundation, the Army Research Office, and the Office of Naval
Research,
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In this paper we present an algorithm which, unlike the algorithms discussed above, untilizes a
modified version of the original CART twoing rule for splitting (Perrone, 1991). This new splitting
rule is a soft-competitive (Hinton and Nowlan, 1990) neural net anolog of the twoi.ig rule which
constructs splits based on a minimization of the interference between sub-tasks.

We use the CART methodology of top-down/bottom-up pruning when growing our network to
assure that we grow right-sized trees which are honest estimators for the underlieing probability
distributions. This helps prevent the tree architecture from becoming biased to the training data.

The additional problem of over-fitting at the sub-network level is avoided by using cross-validation
as a stopping criterion for the training of the tree node networks.

The soft-competition splitting rule is used to dccide how to divide tasKs into sub-tasks. The

soft-competition in the splitting rule allows us to easily determine which sub-tasks are most distinct
and therefore is trying to maximize the reduction in interference with each successive split.

In section 2, the soft-competition splitting rule is explained. In section 3, examples are given
which demonstrate the algorithm's ability to avoid local minima by smart choice of sub-tasks; and

preliminary results on a rea!-world character recognition task are presented. Section 4 contains a
summary and conclusions.

2 The Soft-Competition Splitting Rule

Let p' be the Ith pattern from class i at a given tree node. Let f3 (pý) be the value of the jth
sigmoidal output unit of a back'-rop net for the /th pattern from the zth class. Define the confusion

matrix, mij, as follows:

mEj,1 fhM),

The confusion matrix is thus measuring the overall signal of the ith class in the jth output of
the backprop net. Note that if the net were a perfect classifier, then the confusion matrix would be
the identity matrix. Thus, the off-diagonal terms can be thought of as a measure of the confusion

between classes.
A class partition is defined as a grouping of the labels of the classes present at a given tree

node into two, distinct subgroups a and /3 of labels. For a given class partition, we can define a
confusion measure, M(a,/3) as the amount of confusion existing between the two groups in the
class partition, thus:

M~afl)=- a~oZ in,,,

M(a,/3) NN j

where Na. and N6 are the number of classes in a and 03, respectively; m,, is an element from

the confusion matrix; and a and /3 are the subgroups of the partition.
Now, the a and /3 can be thought of as sub-tasks, so the confusion measure is a measure of

the interference between the two sub-tasks. This gives us a very convenient way of choosing sub-
tasks: we simply minimize the confusion measure over all of the partitions. This can be done with
an exhaustive search, or, if the number of classes is too large, one can use a simulated annealing
algorithm on the confusion measure (Press et al., 1987).
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In practice, one would train a backprop net on the full problem at a particular tree node, use
this net to generate a confusion matrix, use the confusion matrix to generate a class partition and
then train a new net to perform the partitioning to the children nodes of the tree.

The importance of the soft-competition that is inherent in the definition of the confusion matrix
is the following. Consider the situation in which the outputs for two classes are very similar but the
correct class is usually greater than the other, and consider a third class output which is usually
much less than both. If we use hard competition by setting all but one of the outputs to one, we
throw away information that tells us that the relationship between the three classes is not the same.

It is also interesting to note that the splitting rule above can be thought of a a neural n.wt
implementation of the twoing rule described by Breiman (Breiman et al., 1984).

3 Partitioning Examples

In this section, we present two toy classification tasks and one real-world classification task. We
cdscuso why backprop has dit'.c.ulty and we _v, the tree-structured algorithm cyui tiiebt

problems. It should be noted that we are not claiming that backprop can not solve these problems,
but rather that the tree algorithms solves them more easily. This is a characteristic that the tree
algorithm maintains in high dimensional problems where spurious minima really start to effrert the
performance of backprop.

Q C ) 1 2

Figure 1: Two, two-dimensional deterministic classification
problems. Classes are labelled 1, 2 and 3. Sample points are
uniformly distributed within class regions.

The classification tasks we will consider are depicted in figure 3. Note that in principle the
minimal size net needed to solve the first task has a single hidden layer of four hidden units, while
the second task requires two hidden layers of two hidden units each. In practice, however, the
gradient descent of backpropagation will frequently leave the networks in the sub-optimal 'ocal
minima depicted by figure 3 since the local minima are broad and the global minima are narrow.

The tree network constructed by the algorithm in this paper had no difficulty finding the global
minimum everytime. (See figure 3.) ssince the splitting nets used by the tree algorithm were always
less complex than the single backprop nets. In the first case, a minimum backprop solution requires
a hidden layer with four hidden units, while the tree solved the problem with perceptrons. In the
second case, the minimum backprop architecture requires two hidden layers of two hidden units
each, while the tree solved the problem with two hidden units in a single hidden layer. Thus the
tree was less prone to spurious local minima.

The tree algorithm was also tested on a large real-world pattern classification problem. The
numbers '0' through '9' were taken from the NIST OCR database and were used as a classification

3
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Figure 2: Local minima solutions which backprop finds. Note

that in each case backprop is not performing optimally.

Figure 3: Optimal solutions found by tree-structured back-

prop network.

task for both backprop and the tree algorithm described in this paper. The numbers were hand-

labelled, and preprocessed into a 240 dimensional feature vectors. Various backprop architectures
were trained using cross-validation and an independent testing set. The best backprop performance

was 93.8% for a 240-10-10 network while the best tree performance was 95.4% for a tree using a

240-4-2 splitting network. Testing on this classification problem is continuing. More results will be

presented at the NIPS-91 conference.

4 Summary and Conclusions

In this paper, we have seen that the CART tree growing methodology combined with a soft-

competition splitting rule can generate robust tree-structure neural networks by identifying sub-

tasks which have a minimum of confusion between them. Smart partition choices lead to less

complex nets and to less of an impact from spurious minima. We have also seen preliminary results

that the adaptive partitioning rule proposed in this paper can reduce the interference problem in a

real-world classification task.
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